
Industry Viable Electrochemical DNA Detection Sensor Architecture via a Stem-Loop Methylene Blue Redox Reporter and Rapid In Situ Probe Immobilization Method for Pharmacogenetic Biomarker Testing Application
Author(s) -
Asanka Jayawardena,
Sher Maine Tan,
Mark A. Richardson,
Jianxiong Chan,
Helmut Thissen,
Nicolas H. Voelcker,
Patrick Kwan
Publication year - 2022
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1945-7111/ac4a4d
Subject(s) - biosensor , oligonucleotide , oligomer restriction , methylene blue , detection limit , combinatorial chemistry , dna , chemistry , materials science , nanotechnology , chromatography , biochemistry , photocatalysis , catalysis
Identification of biomarkers in clinical applications for diagnostics at the point-of-care (POC) setting requires the development of industry viable biosensing platform. Herein, we report such development of biosensor architecture for the detection of pharmacogenetic biomarker HLA-B*15:02 gene. The biosensor architecture comprises of an oligonucleotide stem-loop probe modified with a methylene blue redox (MB) reporter, immobilized via a rapid “printing” method on the commercially available disposable screen-printed electrodes (SPE). The square wave voltammetric measurements on the DNA sensor showed a clear peak difference of ∼80 nA with a significant difference in peak height values of the faradaic current generated for the MB redox moiety between the positive control (biotin-modified 19 based oligonucleotides with the sequence mimicking the specific region of the HLA-B*15:02 allele and complementary to the probe sequence) and negative control samples (biotin-modified 19 based oligonucleotides with the sequence unrelated to the probe sequence and the HLA-B*15:02 allele). These initial proof of concept results provide support for the possibility of using this signal-off biosensor architecture in the intended pharmacogenetic biomarker testing.