
Mitigated Start-Up of PEMFC in Real Automotive Conditions: Local Experimental Investigation and Development of a New Accelerated Stress Test Protocol
Author(s) -
Andrea Bisello,
Elena Colombo,
Andrea Baricci,
Claudio Rabissi,
Laure Guétaz,
Pawel Gazdzicki,
Andrea Casalegno
Publication year - 2021
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1945-7111/abf77b
Subject(s) - anode , degradation (telecommunications) , cathode , electrolyte , materials science , stress (linguistics) , proton exchange membrane fuel cell , electrode , capacity loss , nuclear engineering , environmental science , chemistry , electrical engineering , chemical engineering , fuel cells , engineering , linguistics , philosophy
This study combines local electrochemical diagnostics with ex situ analysis to investigate degradation mechanism associated to start-up/shut-down (SU/SD) of PEMFC and mitigation strategies adopted in automotive stacks. Local degradation resulting from repeated SU/SD was analyzed with and without mitigation strategies by means of a macro-segmented cell setup provided with Reference Hydrogen Electrodes (RHEs) at both anode and cathode to measure local electrodes potential and current. Accelerated Stress Test (AST) for start-up with and without mitigation strategies are proposed and validated. A ten-fold acceleration of performance loss due to un-mitigated SU/SD has been calculated with respect to AST for catalyst support. Under mitigated SU/SD, instead, a strong degradation was observed as localized at cathode inlet region (i.e. −38% ECSA loss and −22 mV voltage loss after 200 cycles) due to local potentials transient reaching up to 1.5 V vs RHE. These localized stress conditions were additionally reproduced in a zero-gradient and a new AST protocol (named start-up AST) was proposed to mimic the potential profile observed upon SU/SD cycling. Representativeness of the start-up AST for real world degradation was confirmed up to 200 cycles. Platinum dissolution and diffusion/precipitation within the polymer electrolyte was shown to be the dominant mechanism affecting performance loss.