Open Access
Precautions of Using Three-Electrode Configuration to Measure Electrode Overpotential in Solid Oxide Electrochemical Cells: Insights from Finite Element Modeling
Author(s) -
Xinfang Jin,
Kevin Huang
Publication year - 2020
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1945-7111/aba876
Subject(s) - overpotential , electrode , reference electrode , palladium hydrogen electrode , working electrode , reversible hydrogen electrode , anode , electrolyte , materials science , standard hydrogen electrode , electrochemistry , standard electrode potential , chemistry
Accurate determination of electrode overpotentials is essential to assess the performance of the electrode and understand the rate-limiting steps involved. Three-electrode configuration with the use of a reference electrode at a fixed potential is a standard way to measure overpotential of a specific electrode in liquid electrochemical systems. However, application of such three-electrode configuration to solid electrochemical cells for overpotential determination is not straightforward and requires extra caution. Here we report a theoretical Finite Element Analysis on the geometrical requirements for which the reference electrode can be applied to anode- or electrolyte-supported solid oxide button cells. The modeling results suggest that the symmetry of the working and counter electrodes is the key factor determining if a reference electrode is suitable to use. For anode-supported fuel cells with asymmetrical working and counter electrodes, reference electrode cannot be used under all circumstances. To use reference electrode for overpotential measurements, electrolyte-supported cells with symmetrical semicircular-shaped electrodes are preferred. A data processing procedure has also been presented to obtain the electrode overpotential from the measured potential using the three-electrode scheme in solid oxide electrochemical cells.