z-logo
open-access-imgOpen Access
The Role of Water in Vapor-fed Proton-Exchange-Membrane Electrolysis
Author(s) -
Julie C. Fornaciari,
Michael R. Gerhardt,
Jie Zhou,
Yagya N. Regmi,
Nemanja Danilovic,
Alexis T. Bell,
Adam Z. Weber
Publication year - 2020
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1945-7111/ab9b09
Subject(s) - electrolysis , water vapor , anode , chemistry , cathode , relative humidity , electrolysis of water , polymer electrolyte membrane electrolysis , water transport , mole fraction , analytical chemistry (journal) , electrode , chemical engineering , environmental engineering , thermodynamics , environmental chemistry , water flow , organic chemistry , electrolyte , environmental science , physics , engineering
Water-vapor fed electrolysis, a simplified single-phase electrolyzer using a proton-exchange membrane electrode assembly, achieved >100 mA cm −2 performance at <1.7 V, the best for water-vapor electrolysis to date, and was tested under various operating conditions (temperature and inlet relative humidity (RH)). To further probe the limitations of the electrolyzer, a mathematical model was used to identify the overpotentials, local water activity, water content values, and temperature within the cell at these various conditions. The major limitations within the water-vapor electrolyzer are caused by a decreased water content within the membrane phase, indicated by increased Ohmic and mass transport losses seen in applied voltage breakdowns. Further investigations show the water content ( λ , mole of water/mole of sulfonic acid) can decrease from 13 at low current densities down to 6 at high current densities. Increasing the temperature or decreasing RH exacerbates this dry-out effect. Using our mathematical model, we show how these mass transport limitations can be alleviated by considering the role of water as both a reactant and a hydrating agent. We show that low cathode RH can be tolerated as long as the anode RH remains high, showing equivalent performance as symmetric RH feeds.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here