
Mechano-Electrochemical Interaction in Solid-State Lithium Batteries
Author(s) -
Hao Feng,
Wenxiu Wang,
Partha P. Mukherjee
Publication year - 2020
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1945-7111/ab8a98
Subject(s) - electrolyte , separator (oil production) , anode , electrochemistry , materials science , plating (geology) , electrochemical kinetics , cathode , composite material , chemical engineering , chemistry , electrode , thermodynamics , physics , geophysics , geology , engineering
A solid-state lithium (Li) battery primarily consists of Li metal anode, solid electrolyte separator, and cathode. The asymmetric volume changes, originating from ion transport and interfacial Li growth during plating, lead to significant stresses in the layered architecture. In this study, we develop a coupled mechanics-electrochemistry formalism for polymer electrolyte based solid-state batteries, in particular, focusing on the stress effect on electrochemical performance. By means of a coupling coefficient, it is found that stress-assisted ion transport in the electrolyte results in a delayed Sand’s time and increased critical current density of unstable electrodeposition, and consequently, alleviates the propensity of dendrite formation. Stress at the Li metal-electrolyte interface affects the electrochemical reaction kinetics, and the influences from the deviatoric stress and hydrostatic pressure vary with Li plating time. In addition, a low restraint stiffness to the layered structure could elastically buffer the volumetric changes and thus reduce the stress during Li plating. This fundamental study provides guidance for the design of solid-state batteries, aimed at stable electrodeposition and mechanical integrity.