
Understanding Adverse Effects of Temperature Shifts on Li-Ion Batteries: An Operando Acoustic Study
Author(s) -
Wesley Chang,
Clement Bommier,
Thomas P. Fair,
Justin Yeung,
Shripad Patil,
Daniel Steingart
Publication year - 2020
Publication title -
journal of the electrochemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1945-7111/ab6c56
Subject(s) - electrolyte , battery (electricity) , arrhenius equation , materials science , temperature cycling , ion , catastrophic failure , attenuation , thermodynamics , nuclear engineering , electrode , chemistry , activation energy , composite material , thermal , engineering , physics , power (physics) , organic chemistry , optics
Studies related to battery performance and long-term health of commercial Li-ion batteries (LIBs) typically have a fixed temperature parameter. However, commercial LIBs are subject to temperature fluctuations due to their local environment and operating conditions, and these transient temperatures are well known to impact long-term stability. Herein, we demonstrate the adverse effects of temperature shifts, and show that transitioning from low temperature to higher temperature can lead to catastrophic failure within practical temperature ranges experienced by commercial LIBs. We show there exists an Arrhenius relationship between the rate of acoustic attenuation and the magnitude of the temperature shift. A combination of acoustic attenuation, which marks gassing occurrence during cycling, and post mortem chemical analyses provides further mechanistic insight into the Li-rich solid electrolyte interphase (SEI) formation at low temperatures and subsequent reactions with the electrolyte at higher temperatures. Further, several strategies to prevent or mitigate catastrophic failure are introduced. On a broader scale, this research further highlights the importance of temperature and current controls integration into battery management systems (BMS) for both safety and extension of cycle life as battery systems move toward fast charge (>3 C) capability.