z-logo
open-access-imgOpen Access
High-Voltage Electrolytes Based on Adiponitrile for Li-Ion Batteries
Author(s) -
Yaser AbuLebdeh,
Isobel Davidson
Publication year - 2008
Publication title -
journal of the electrochemical society
Language(s) - French
Resource type - Journals
SCImago Journal Rank - 1.258
H-Index - 271
eISSN - 1945-7111
pISSN - 0013-4651
DOI - 10.1149/1.3023084
Subject(s) - electrolyte , ethylene carbonate , electrochemistry , graphite , chemistry , inorganic chemistry , electrochemical window , anode , salt (chemistry) , electrode , chemical engineering , materials science , ionic conductivity , organic chemistry , engineering
Adiponitrile, CN[CH2]4CN, ADN, was evaluated as both a solvent and cosolvent in safer and more electrochemically stable electrolytes suitable for high energy and power density Li-ion batteries. An electrochemical investigation of its electrolyte solution with the Li(CF3SO2)2N, LiTFSI, salt showed a wide electrochemical window of 6 V vs Li+/Li. The high melting point and the incompatibility of ADN with graphite anode required the use of ethylene carbonate (EC) as a cosolvent. The resultant EC:ADN electrolyte solutions showed ionic conductivities reaching 3.4 mS/cm, viscosities of 9.2 cP, and an improved resistance to aluminum corrosion up to 4.4 V, all at 20\ub0C. Li-ion batteries incorporating graphite/LiCoO2 electrodes were assembled using EC:ADN electrolyte mixture containing 1 M LiTFSI and 0.1 M LiBOB as a cosalt, and discharge capacities of 108 mAh/g with very good capacity retention were obtained. AC impedance spectra of the batteries recorded as a function of charging and cycling indicated the presence of a stable solid electrolyte interface.On a \ue9valu\ue9 l\u2019adiponitrile, CN[CH2]4CN (ADN), en tant que solvant ou cosolvant pour des \ue9lectrolytes plus s\ue9curitaires et plus stables sur le plan \ue9lectrochimique, convenant \ue0 des piles Li/ion \ue0 haute \ue9nergie et haute densit\ue9 de puissance. Une \ue9tude \ue9lectrochimique de sa solution \ue9lectrolyte avec le sel Li(CF3SO2)2N, LiTFSI, a permis de mettre en \ue9vidence une large fen\ueatre \ue9lectrochimique de 6 V par rapport \ue0 Li+/Li. Le point d\u2019\ue9bullition \ue9lev\ue9 et l\u2019incompatibilit\ue9 de l\u2019ADN avec l\u2019anode en graphite ont rendu n\ue9cessaire l\u2019utilisation de carbonate d\u2019\ue9thyl\ue8ne (CE) comme cosolvant. Les solutions \ue9lectrolytes CE/ADN ont exhib\ue9 des conductivit\ue9s ioniques pouvant atteindre 3,4 mS/cm, des viscosit\ue9s de 9,2 cP et une meilleure r\ue9sistance \ue0 la corrosion de l\u2019aluminium jusqu\u2019\ue0 4,4 V, le tout \ue0 20 \ub0C. On a assembl\ue9 des piles Li/ion comportant des \ue9lectrodes graphite/LiCoO2 et un m\ue9lange \ue9lectrolyte CE/ADN contenant du LiTFSI 1 M et du LiBOB 0,1 M en tant que co-sels, qui ont exhib\ue9 des capacit\ue9s de d\ue9charge de 108 mAh/g avec une tr\ue8s bonne r\ue9tention de capacit\ue9. Le spectre d\u2019imp\ue9dance c.a. des piles enregistr\ue9 en fonction de la charge et du cycle a mis en \ue9vidence la pr\ue9sence d\u2019une interface \ue9lectrolyte solide stable.Peer reviewed: YesNRC publication: Ye

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom