z-logo
open-access-imgOpen Access
Linearity and Bias of Proton Density Fat Fraction as a Quantitative Imaging Biomarker: A Multicenter, Multiplatform, Multivendor Phantom Study
Author(s) -
Houchun H. Hu,
Takeshi Yokoo,
Mustafa R. Bashir,
Claude B. Sirlin,
Diego Hernando,
Dariya I. Malyarenko,
Thomas L. Chenevert,
Mark A. Smith,
Suraj D. Serai,
Michael S. Middleton,
Walter Henderson,
Gavin Hamilton,
Jean Shaffer,
Yunhong Shu,
Jean A. Tkach,
Andrew T. Trout,
Nancy A. Obuchowski,
Jean H. Brittain,
Edward F. Jackson,
Scott B. Reeder
Publication year - 2021
Publication title -
radiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.118
H-Index - 295
eISSN - 1527-1315
pISSN - 0033-8419
DOI - 10.1148/radiol.2021202912
Subject(s) - imaging phantom , medicine , nuclear medicine , confounding , linear regression , statistics , mathematics
Background Proton density fat fraction (PDFF) estimated by using chemical shift-encoded (CSE) MRI is an accepted imaging biomarker of hepatic steatosis. This work aims to promote standardized use of CSE MRI to estimate PDFF. Purpose To assess the accuracy of CSE MRI methods for estimating PDFF by determining the linearity and range of bias observed in a phantom. Materials and Methods In this prospective study, a commercial phantom with 12 vials of known PDFF values were shipped across nine U.S. centers. The phantom underwent 160 independent MRI examinations on 27 1.5-T and 3.0-T systems from three vendors. Two three-dimensional CSE MRI protocols with minimal T1 bias were included: vendor and standardized. Each vendor's confounder-corrected complex or hybrid magnitude-complex based reconstruction algorithm was used to generate PDFF maps in both protocols. The Siemens reconstruction required a configuration change to correct for water-fat swaps in the phantom. The MRI PDFF values were compared with the known PDFF values by using linear regression with mixed-effects modeling. The 95% CIs were calculated for the regression slope (ie, proportional bias) and intercept (ie, constant bias) and compared with the null hypothesis (slope = 1, intercept = 0). Results Pooled regression slope for estimated PDFF values versus phantom-derived reference PDFF values was 0.97 (95% CI: 0.96, 0.98) in the biologically relevant 0%-47.5% PDFF range. The corresponding pooled intercept was -0.27% (95% CI: -0.50%, -0.05%). Across vendors, slope ranges were 0.86-1.02 (vendor protocols) and 0.97-1.0 (standardized protocol) at 1.5 T and 0.91-1.01 (vendor protocols) and 0.87-1.01 (standardized protocol) at 3.0 T. The intercept ranges (absolute PDFF percentage) were -0.65% to 0.18% (vendor protocols) and -0.69% to -0.17% (standardized protocol) at 1.5 T and -0.48% to 0.10% (vendor protocols) and -0.78% to -0.21% (standardized protocol) at 3.0 T. Conclusion Proton density fat fraction estimation derived from three-dimensional chemical shift-encoded MRI in a commercial phantom was accurate across vendors, imaging centers, and field strengths, with use of the vendors' product acquisition and reconstruction software. © RSNA, 2021 See also the editorial by Dyke in this issue.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here