Open Access
Diagnosis of Coronavirus Disease 2019 Pneumonia by Using Chest Radiography: Value of Artificial Intelligence
Author(s) -
Ran Zhang,
Xin Tie,
Zhihua Qi,
Nicholas Bevins,
Chengzhu Zhang,
Dalton Griner,
Thomas Song,
Jeffrey Nadig,
Mark L. Schiebler,
John W. Garrett,
Ke Li,
Scott B. Reeder,
Guang-Hong Chen
Publication year - 2021
Publication title -
radiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.118
H-Index - 295
eISSN - 1527-1315
pISSN - 0033-8419
DOI - 10.1148/radiol.2020202944
Subject(s) - medicine , pneumonia , radiography , radiology , covid-19 , receiver operating characteristic , chest radiograph , disease , infectious disease (medical specialty)
Background Radiologists are proficient in differentiating between chest radiographs with and without symptoms of pneumonia but have found it more challenging to differentiate coronavirus disease 2019 (COVID-19) pneumonia from non-COVID-19 pneumonia on chest radiographs. Purpose To develop an artificial intelligence algorithm to differentiate COVID-19 pneumonia from other causes of abnormalities at chest radiography. Materials and Methods In this retrospective study, a deep neural network, CV19-Net, was trained, validated, and tested on chest radiographs in patients with and without COVID-19 pneumonia. For the chest radiographs positive for COVID-19, patients with reverse transcription polymerase chain reaction results positive for severe acute respiratory syndrome coronavirus 2 with findings positive for pneumonia between February 1, 2020, and May 30, 2020, were included. For the non-COVID-19 chest radiographs, patients with pneumonia who underwent chest radiography between October 1, 2019, and December 31, 2019, were included. Area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were calculated to characterize diagnostic performance. To benchmark the performance of CV19-Net, a randomly sampled test data set composed of 500 chest radiographs in 500 patients was evaluated by the CV19-Net and three experienced thoracic radiologists. Results A total of 2060 patients (5806 chest radiographs; mean age, 62 years ± 16 [standard deviation]; 1059 men) with COVID-19 pneumonia and 3148 patients (5300 chest radiographs; mean age, 64 years ± 18; 1578 men) with non-COVID-19 pneumonia were included and split into training and validation and test data sets. For the test set, CV19-Net achieved an AUC of 0.92 (95% CI: 0.91, 0.93). This corresponded to a sensitivity of 88% (95% CI: 87, 89) and a specificity of 79% (95% CI: 77, 80) by using a high-sensitivity operating threshold, or a sensitivity of 78% (95% CI: 77, 79) and a specificity of 89% (95% CI: 88, 90) by using a high-specificity operating threshold. For the 500 sampled chest radiographs, CV19-Net achieved an AUC of 0.94 (95% CI: 0.93, 0.96) compared with an AUC of 0.85 (95% CI: 0.81, 0.88) achieved by radiologists. Conclusion CV19-Net was able to differentiate coronavirus disease 2019-related pneumonia from other types of pneumonia, with performance exceeding that of experienced thoracic radiologists. © RSNA, 2021 Online supplemental material is available for this article.