z-logo
open-access-imgOpen Access
Type-Driven Gradual Security with References
Author(s) -
Matías Toro,
Ronald Garcia,
Éric Tanter
Publication year - 2018
Publication title -
acm transactions on programming languages and systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.233
H-Index - 70
eISSN - 1558-4593
pISSN - 0164-0925
DOI - 10.1145/3229061
Subject(s) - computer science , programming language , static analysis , code refactoring , simple (philosophy) , type (biology) , type safety , type inference , code (set theory) , theoretical computer science , artificial intelligence , software , ecology , philosophy , set (abstract data type) , epistemology , inference , biology
In security-typed programming languages, types statically enforce noninterference between potentially conspiring values, such as the arguments and results of functions. But to adopt static security types, like other advanced type disciplines, programmers face a steep wholesale transition, often forcing them to refactor working code just to satisfy their type checker. To provide a gentler path to security typing that supports safe and stylish but hard-to-verify programming idioms, researchers have designed languages that blend static and dynamic checking of security types. Unfortunately, most of the resulting languages only support static, type-based reasoning about noninterference if a program is entirely statically secured. This limitation substantially weakens the benefits that dynamic enforcement brings to static security typing. Additionally, current proposals are focused on languages with explicit casts and therefore do not fulfill the vision of gradual typing, according to which the boundaries between static and dynamic checking only arise from the (im)precision of type annotations and are transparently mediated by implicit checks.In this article, we present GSLRef, a gradual security-typed higher-order language with references. As a gradual language, GSLRef supports the range of static-to-dynamic security checking exclusively driven by type annotations, without resorting to explicit casts. Additionally, GSLRef lets programmers use types to reason statically about termination-insensitive noninterference in all programs, even those that enforce security dynamically. We prove that GSLRef satisfies all but one of Siek et al.’s criteria for gradually-typed languages, which ensure that programs can seamlessly transition between simple typing and security typing. A notable exception regards the dynamic gradual guarantee, which some specific programs must violate if they are to satisfy noninterference; it remains an open question whether such a language could fully satisfy the dynamic gradual guarantee. To realize this design, we were led to draw a sharp distinction between syntactic type safety and semantic type soundness, each of which constrains the design of the gradual language.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom