
Dielectric tunable characteristics of compositional-gradient BaTi1−xSnxO3 thin films
Author(s) -
Chenjing Wu,
Manwen Yao
Publication year - 2021
Publication title -
journal of advanced dielectrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.38
H-Index - 13
eISSN - 2010-135X
pISSN - 2010-1368
DOI - 10.1142/s2010135x21500193
Subject(s) - thin film , materials science , dielectric , atmospheric temperature range , condensed matter physics , analytical chemistry (journal) , optoelectronics , nanotechnology , thermodynamics , physics , chemistry , chromatography
Compositional-gradient [Formula: see text][Formula: see text]O 3 thin films on Pt(100)/Ti/SiO 2 /Si substrates are fabricated with sol–gel using spin coating. All of the structures of the prepared thin films are of single-phase crystalline perovskite with a dense and crack-free surface morphology. BTS10/15/20 thin film exhibits enhanced temperature stability in its dielectric behavior. The temperature coefficient of capacitance [Formula: see text] in the temperature range from [Formula: see text]C to [Formula: see text]C is [Formula: see text]C and that of [Formula: see text] in the temperature range from [Formula: see text]C to [Formula: see text]C is [Formula: see text]C. Furthermore, the thin films show low leakage current density and dielectric loss. High and stable dielectric tunable performances are found in BTS10/15/20 thin films: the dielectric tunability of the thin films is around 20.1% under a bias voltage of 8 V at 1 MHz and the corresponding dielectric constant is in the range between 89 and 111, which is beneficial for impedance matching in circuits. Dielectric tunability can be obtained under a low tuning voltage, which helps ensure safety. The simulated resonant frequency of the compositional-gradient BTS thin films depends on the bias electric field, showing compositional-gradient BTS thin films could be used in electrically tunable components and devices. These properties make compositional-gradient BTS thin films a promising candidate for dielectric tuning.