z-logo
open-access-imgOpen Access
Comparative study on Photobiomodulation between 630 nm and 810 nm LED in diabetic wound healing both in vitro and in vivo
Author(s) -
He Zhao,
Tengda Ji,
Tianzhen Sun,
Haolin Liu,
Yidi Liu,
Defu Chen,
Ying Wang,
Yi-Zhou Tan,
Jing Zeng,
Haixia Qiu,
Ying Gu
Publication year - 2022
Publication title -
journal of innovative optical health sciences/journal of innovation in optical health science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 24
eISSN - 1793-5458
pISSN - 1793-7205
DOI - 10.1142/s1793545822500109
Subject(s) - in vivo , wound healing , in vitro , irradiation , light emitting diode , fibroblast , medicine , chemistry , physics , optoelectronics , biology , surgery , biochemistry , microbiology and biotechnology , nuclear physics
Photobiomodulation (PBM) promoting wound healing has been demonstrated by many studies. Currently, 630 nm and 810 nm light-emitting diodes (LEDs), as light sources, are frequently used in the treatment of diabetic foot ulcers (DFUs) in clinics. However, the dose–effect relationship of LED-mediated PBM is not fully understood. Furthermore, among the 630[Formula: see text]nm and 810[Formula: see text]nm LEDs, which one gets a better effect on accelerating the wound healing of diabetic ulcers is not clear. The aim of this study is to evaluate and compare the effects of 630[Formula: see text]nm and 810[Formula: see text]nm LED-mediated PBM in wound healing both in vitro and in vivo. Our results showed that both 630[Formula: see text]nm and 810[Formula: see text]nm LED irradiation significantly promoted the proliferation of mouse fibroblast cells (L929) at different light irradiances (1, 5, and 10[Formula: see text]mW/cm[Formula: see text]. The cell proliferation rate increased with the extension of irradiation time (100, 200, and 500[Formula: see text]s), but it decreased when the irradiation time was over 500[Formula: see text]s. Both 630[Formula: see text]nm and 810[Formula: see text]nm LED irradiation (5[Formula: see text]mW/cm[Formula: see text] significantly improved the migration capability of L929 cells. No difference between 630[Formula: see text]nm and 810[Formula: see text]nm LED-mediated PBM in promoting cell proliferation and migration was detected. In vivo results presented that both 630[Formula: see text]nm and 810[Formula: see text]nm LED irradiation promoted the wound healing and the expression of the vascular endothelial growth factor (VEGF) and transforming growth factor (TGF) in the wounded skin of type 2 diabetic mice. Overall, these results suggested that LED-mediated PBM promotes wound healing of diabetic mice through promoting fibroblast cell proliferation, migration, and the expression of growth factors in the wounded skin. LEDs (630[Formula: see text]nm and 810[Formula: see text]nm) have a similar outcome in promoting wound healing of type 2 diabetic mice.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here