
Binary organic nanoparticles with enhanced reactive oxygen species generation capability for photodynamic therapy
Author(s) -
Xiaofu Weng,
Zhouzhou Bao,
Xunbin Wei
Publication year - 2021
Publication title -
journal of innovative optical health sciences/journal of innovation in optical health science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 24
eISSN - 1793-5458
pISSN - 1793-7205
DOI - 10.1142/s1793545821500097
Subject(s) - photodynamic therapy , porphyrin , reactive oxygen species , biocompatibility , singlet oxygen , nanoparticle , quenching (fluorescence) , nanotechnology , photochemistry , materials science , fluorescence , chemistry , combinatorial chemistry , oxygen , organic chemistry , biochemistry , physics , quantum mechanics
Photodynamic therapy (PDT) takes advantage of photosensitizers (PSs) to generate reactive oxygen species (ROS) for cell killing when excited by light. It has been widely used in clinic for therapy of multiple cancers. Currently, all the FDA-approved PSs, including porphyrin, are all small organic molecules, suffering from aggregation-caused quenching (ACQ) issues in biological environment and lacking tumor targeting capability. Nanoparticles (NPs) with size between 20[Formula: see text]nm and 200[Formula: see text]nm possess tumor targeting capability due to the enhanced permeability and retention (EPR) effect. It is urgent to develop a new strategy to form clinical-approved-PSs-based NPs with improved ROS generation capability. In this study, we report a strategy to overwhelm the ACQ of porphyrin by doping it with a type of aggregation-induced emission (AIE) luminogen to produce a binary NPs with high biocompatibility, and enhanced fluorescence and ROS generation capability. Such NPs can be readily synthesized by mixing a porphyrin derivative, Ce6 with a typical AIE luminogen, TPE-Br. Here, our experimental results have demonstrated the feasibility and effectiveness of this strategy, endowing it a great potential in clinical applications.