z-logo
open-access-imgOpen Access
Improving sampling depth of laser speckle imaging by topical optical clearing: A theoretical and in vivo study
Author(s) -
Dong Li,
Y. Zhang,
Biao Chen
Publication year - 2019
Publication title -
journal of innovative optical health sciences/journal of innovation in optical health science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 24
eISSN - 1793-5458
pISSN - 1793-7205
DOI - 10.1142/s1793545820500042
Subject(s) - penetration depth , laser , penetration (warfare) , biomedical engineering , materials science , in vivo , speckle pattern , photon , optics , chemistry , physics , mathematics , medicine , microbiology and biotechnology , operations research , biology
The effect of optical cleaning method combined with laser speckle imaging (LSI) was discussed to improve the detection depth of LSI due to high scattering characteristics of skin, which limit its clinical application. A double-layer skin tissue model embedded with a single blood vessel was established, and the Monte Carlo method was used to simulate photon propagation under the action of light-permeating agent. 808[Formula: see text]nm semiconductor and 632.8[Formula: see text]nm He–Ne lasers were selected to study the effect of optical clearing agents (OCAs) on photon deposition in tissues. Results show that the photon energy deposition density in the epidermis increases with the amount of tissue fluid replaced by OCA. Compared with glucose solution, polyethylene glycol 400 (PEG 400) and glycerol can considerably increase the average penetration depth of photons in the skin tissue, thereby raising the sampling depth of the LSI. After the action of glycerol, PEG 400, and glucose, the average photon penetration depth is increased by 51.78%, 51.06%, and 21.51% for 808nm, 68.93%, 67.94%, and 26.67% for 632.8 nm lasers, respectively. In vivo experiment by dorsal skin chamber proves that glycerol can cause a substantial decrease in blood flow rate, whereas PEG 400 can significantly improve the capability of light penetration without affecting blood velocity, which exhibits considerable potential in the monitoring of blood flow in skin tissues.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here