
Carbon-coated magnetic particles increase tissue temperatures after laser irradiation
Author(s) -
Shupeng Liu,
Na Chen,
Fufei Pang,
Zhengyi Chen,
Tingyun Wang
Publication year - 2015
Publication title -
journal of innovative optical health sciences/journal of innovation in optical health science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 24
eISSN - 1793-5458
pISSN - 1793-7205
DOI - 10.1142/s1793545815500182
Subject(s) - materials science , laser , irradiation , ultraviolet , transmission electron microscopy , hyperthermia , magnetometer , fiber bragg grating , optics , optoelectronics , nanotechnology , magnetic field , wavelength , medicine , physics , quantum mechanics , nuclear physics
Purpose: This work focused on the investigation the hyperthermia performance of the carbon-coated magnetic particles (CCMPs) in laser-induced hyperthermia. Materials and methods: We prepared CCMPs using the organic carbonization method, and then characterized them with transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectrophotometry, vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). In order to evaluate their performance in hyperthermia, the CCMPs were tested in laser-induced thermal therapy (LITT) experiments, in which we employed a fully distributed fiber Bragg grating (FBG) sensor to profile the tissue's dynamic temperature change under laser irradiation in real time. Results: The sizes of prepared CCMPs were about several micrometers, and the LITT results show that the tissue injected with the CCMPs absorbed more laser energy, and its temperature increased faster than the contrast tissue without CCMPs. Conclusions: The CCMPs may be of great help in hyperthermia applications