
Time-reversed optical focusing through scattering media by digital full phase and amplitude recovery using a single phase-only SLM
Author(s) -
Qiang Yang,
Xinzhu Sang,
Ding Xu
Publication year - 2015
Publication title -
journal of innovative optical health sciences/journal of innovation in optical health science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 24
eISSN - 1793-5458
pISSN - 1793-7205
DOI - 10.1142/s1793545815500078
Subject(s) - wavefront , spatial light modulator , optics , amplitude , scattering , phase (matter) , physics , light scattering , speckle pattern , light field , phase conjugation , laser , quantum mechanics
Focusing light though scattering media beyond the ballistic regime is a challenging task in biomedical optical imaging. This challenge can be overcome by wavefront shaping technique, in which a time-reversed (TR) wavefront of scattered light is generated to suppress the scattering. In previous TR optical focusing experiments, a phase-only spatial light modulator (SLM) has been typically used to control the wavefront of incident light. Unfortunately, although the phase information is reconstructed by the phase-only SLM, the amplitude information is lost, resulting in decreased peak-to-background ratio (PBR) of optical focusing in the TR wavefront reconstruction. A new method of TR optical focusing through scattering media is proposed here, which numerically reconstructs the full phase and amplitude of a simulated scattered light field by using a single phase-only SLM. Simulation results and the proposed optical setup show that the time-reversal of a fully developed speckle field can be digitally implemented with both phase and amplitude recovery, affording a way to improve the performance of light focusing through scattering media