
Studies on photodynamic mechanism of a novel chlorine derivative (TDPC) and its antitumor effect for photodynamic therapy in vitro and in vivo
Author(s) -
Ying Ye,
Laixing Wang,
DanPing Zhang,
Yuan Yan,
Zhilong Chen
Publication year - 2015
Publication title -
journal of innovative optical health sciences/journal of innovation in optical health science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 24
eISSN - 1793-5458
pISSN - 1793-7205
DOI - 10.1142/s1793545815400015
Subject(s) - photodynamic therapy , photosensitizer , in vivo , in vitro , apoptosis , cancer research , singlet oxygen , chemistry , cell , phototoxicity , chlorin , biophysics , biology , biochemistry , photochemistry , oxygen , microbiology and biotechnology , organic chemistry
Photodynamic therapy (PDT) represents a promising method for treatment of cancerous tumors. The chemical and physical properties of used photosensitizer (PS) play key roles in the treatment efficacy. In this study, a novel PS, 5,10,15,20-tetrakis((5-dipropylamino)pentyl)-chlorin (TDPC) which displayed a characteristic long wavelength absorption peak at 650 nm were synthesized. It also shows a singlet oxygen generation rate of 4.257 min-1. Generally, TDPC is localized in mitochondria and nucleus of cell. After light irradiation with 650 nm laser, it can kill many types of cell, in addition, TDPC–PDT can destroy ECA-109 tumor in nude mice and a necrotic scab was formed eventually. The expression levels of many genes which regulated cell growth and apoptosis were determined by RT-PCR following TDPC–PDT. The results showed that it either increased or decreased, among which, the expression level of TNFSF13, a member of tumor necrosis factor superfamily, increased significantly. In general, TDPC is an effective antitumor PS in vitro and in vivo and is worthy of further study as a new drug candidate. TNFSF13 will be an important molecular target for the discovery of new PSs