z-logo
open-access-imgOpen Access
Application of particle swarm optimization-based least square support vector machine in quantitative analysis of extraction solution of yangxinshi tablet using near infrared spectroscopy
Author(s) -
Wei-Jian Lou,
Kai Yang,
Ming Zhu,
Yongjiang Wu,
Xuesong Liu,
Young-Woo Jin
Publication year - 2014
Publication title -
journal of innovative optical health sciences/journal of innovation in optical health science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 24
eISSN - 1793-5458
pISSN - 1793-7205
DOI - 10.1142/s1793545814500114
Subject(s) - support vector machine , particle swarm optimization , calibration , partial least squares regression , artificial intelligence , mathematics , kernel (algebra) , hyperparameter , mean squared error , pattern recognition (psychology) , computer science , algorithm , statistics , combinatorics
A particle swarm optimization (PSO)-based least square support vector machine (LS-SVM) method was investigated for quantitative analysis of extraction solution of Yangxinshi tablet using near infrared (NIR) spectroscopy. The usable spectral region (5400–6200 cm-1) was identified, then the first derivative spectra smoothed using a Savitzky–Golay filter were employed to establish calibration models. The PSO algorithm was applied to select the LS-SVM hyperparameters (including the regularization and kernel parameters). The calibration models of total flavonoids, puerarin, salvianolic acid B and icariin were established using the optimum hyperparameters of LS-SVM. The performance of LS-SVM models were compared with partial least squares (PLS) regression, feed-forward back-propagation network (BPANN) and support vector machine (SVM). Experimental results showed that both the calibration results and prediction accuracy of the PSO-based LS-SVM method were superior to PLS, BP-ANN and SVM. For PSO-based LS-SVM models, the determination coefficients (R2) for the calibration set were above 0.9881, and the RSEP values were controlled within 5.772%. For the validation set, the RMSEP values were close to RMSEC and less than 0.042, the RSEP values were under 8.778%, which were much lower than the PLS, BP-ANN and SVM models. The PSO-based LS-SVM algorithm employed in this study exhibited excellent calibration performance and prediction accuracy, which has definite practice significance and application value

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here