
Application of particle swarm optimization-based least square support vector machine in quantitative analysis of extraction solution of yangxinshi tablet using near infrared spectroscopy
Author(s) -
Wei-Jian Lou,
Kai Yang,
Ming Zhu,
Yongjiang Wu,
Xuesong Liu,
Young-Woo Jin
Publication year - 2014
Publication title -
journal of innovative optical health sciences/journal of innovation in optical health science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 24
eISSN - 1793-5458
pISSN - 1793-7205
DOI - 10.1142/s1793545814500114
Subject(s) - support vector machine , particle swarm optimization , calibration , partial least squares regression , artificial intelligence , mathematics , kernel (algebra) , hyperparameter , mean squared error , pattern recognition (psychology) , computer science , algorithm , statistics , combinatorics
A particle swarm optimization (PSO)-based least square support vector machine (LS-SVM) method was investigated for quantitative analysis of extraction solution of Yangxinshi tablet using near infrared (NIR) spectroscopy. The usable spectral region (5400–6200 cm-1) was identified, then the first derivative spectra smoothed using a Savitzky–Golay filter were employed to establish calibration models. The PSO algorithm was applied to select the LS-SVM hyperparameters (including the regularization and kernel parameters). The calibration models of total flavonoids, puerarin, salvianolic acid B and icariin were established using the optimum hyperparameters of LS-SVM. The performance of LS-SVM models were compared with partial least squares (PLS) regression, feed-forward back-propagation network (BPANN) and support vector machine (SVM). Experimental results showed that both the calibration results and prediction accuracy of the PSO-based LS-SVM method were superior to PLS, BP-ANN and SVM. For PSO-based LS-SVM models, the determination coefficients (R2) for the calibration set were above 0.9881, and the RSEP values were controlled within 5.772%. For the validation set, the RMSEP values were close to RMSEC and less than 0.042, the RSEP values were under 8.778%, which were much lower than the PLS, BP-ANN and SVM models. The PSO-based LS-SVM algorithm employed in this study exhibited excellent calibration performance and prediction accuracy, which has definite practice significance and application value