
Eating quality of cooked rice determination using Fourier transform near infrared spectroscopy
Author(s) -
Ravipat Lapcharoensuk,
Panmanas Sirisomboon
Publication year - 2014
Publication title -
journal of innovative optical health sciences/journal of innovation in optical health science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 24
eISSN - 1793-5458
pISSN - 1793-7205
DOI - 10.1142/s1793545814500035
Subject(s) - aroma , food science , partial least squares regression , white rice , starch , mathematics , food quality , fourier transform infrared spectroscopy , chemistry , brown rice , near infrared spectroscopy , statistics , physics , quantum mechanics
The goal of this research was to study the relationship between the eating quality of cooked rice and near infrared spectra measured by a Fourier Transform near infrared (FT–NIR) Spectrometer. Samples of milled: parboiled rice, white rice, new Jasmine rice (harvested in 2012) and aged Jasmine rice (harvested in 2006 or during the period 2007–2011) were used in this study. The eating quality of the cooked rice, i.e., adhesiveness, hardness, dryness, whiteness and aroma, were evaluated by trained sensory panelists. FT–NIR spectroscopy models for predicting the eating quality of cooked rice were established using the partial least squares regression. Among the eating quality, the stickiness model indicated its highest prediction ability (i.e., $R_{\rm val}^{2} = 0.71$; RMSEP = 0.65; Bias = 0.00; RPD = 1.87) and SEP/SD of 2. In addition, it was clear that the water content did not affect the eating quality of cooked rice, rather the main chemical component implicated was starch