
A general blow-up result for a degenerate hyperbolic inequality in an exterior domain
Author(s) -
Mohamed Jleli,
Mokhtar Kirane,
Bessem Samet
Publication year - 2021
Publication title -
bulletin of mathematical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.407
H-Index - 21
eISSN - 1664-3607
pISSN - 1664-3615
DOI - 10.1142/s1664360721500120
Subject(s) - degenerate energy levels , mathematics , domain (mathematical analysis) , fujita scale , type (biology) , neumann boundary condition , mathematical analysis , inequality , boundary (topology) , dirichlet distribution , dirichlet boundary condition , exponent , pure mathematics , boundary value problem , physics , ecology , quantum mechanics , meteorology , biology , linguistics , philosophy
In this paper, we consider a degenerate hyperbolic inequality in an exterior domain under three types of boundary conditions: Dirichlet-type, Neumann-type, and Robin-type boundary conditions. Using a unified approach, we show that all the considered problems have the same Fujita critical exponent. Moreover, we answer some open questions from the literature regarding the critical case.