z-logo
open-access-imgOpen Access
OPTIMIZATION OF RABBIT VENTRICULAR ELECTROPHYSIOLOGICAL MODEL AND SIMULATION OF SYNTHETIC ELECTROCARDIOGRAM
Author(s) -
Haibo Zhu,
Lian Jin,
Jiayu Zhang,
Xiaomei Wang
Publication year - 2021
Publication title -
journal of mechanics in medicine and biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.236
H-Index - 30
eISSN - 1793-6810
pISSN - 0219-5194
DOI - 10.1142/s0219519421500019
Subject(s) - qrs complex , cardiology , electrocardiography , electrophysiology , medicine , beat (acoustics) , physics , acoustics
This study aimed to use computer simulation method to study the mechanism of cardiac electrical activities. We optimized an electrophysiological rabbit ventricular model, including myocardial segmentation, heterogeneity and a realistic His-Purkinje network. Simulations of normal state, several types of ventricular premature contractions (VPC), conduction system pacing and right ventricular apical pacing were performed and the detailed cardiac electrical activities were studied from cell level to electrocardiogram (ECG) level. A detailed multiscale optimized ventricular model was obtained. The model effectively simulated various types of electrical activities. The synthetic ECG results were very similar to the real clinical ECG. The duration of QRS of typical VPC is 58[Formula: see text]ms, 71% longer than that of a normal-state synthetic QRS and the amplitude of the QRS is 35% larger, while the QRS duration and amplitude of the real clinical ECG of typical VPC are 69% longer and 36% larger than those of the real normal QRS. The duration of QRS of ventricular fusion beat is 31[Formula: see text]ms, 91% of that of a normal-state synthetic QRS and the amplitude of the QRS is 36% larger, while the QRS duration of the real clinical ECG of a ventricular fusion beat is 92% of the real normal QRS and the amplitude is 37% larger. Therefore, the results indicate that this model is effective and reliable in studying the detailed process of cardiac excitation and pacing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here