
EAR CANAL INSERTION-TYPE PIEZOELECTRIC BONE CONDUCTION ACTUATOR OF BRIDGE STRUCTURE
Author(s) -
Do Yeon Kim,
Sung Dae Na,
Ki Woong Seong,
Myoung Nam Kim
Publication year - 2020
Publication title -
journal of mechanics in medicine and biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.236
H-Index - 30
eISSN - 1793-6810
pISSN - 0219-5194
DOI - 10.1142/s0219519420400266
Subject(s) - ear canal , acoustics , bone conduction , materials science , piezoelectricity , hearing aid , displacement (psychology) , actuator , vibration , finite element method , thermal conduction , eardrum , structural engineering , engineering , physics , electrical engineering , composite material , psychology , psychotherapist
Hearing loss in people is increasing because of a rise in the usage of wireless audio multimedia devices. Hearing aids are used as representative hearing rehabilitation devices. Bone conduction hearing aids are recommended for problems in the eardrum and middle ear. Bone conduction is classified according to the driving method into two types, electromagnetic and piezoelectric. Electromagnetic bone conduction causes skin disease and aesthetic problems due to transplantation, high power consumption, and external interference. Piezoelectric bone conduction converts electrical energy into mechanical vibrations, and the characteristics change linearly with size. However, the driving force of ear canal insertion of the piezoelectric body is limited because of the ear canal anatomy. In this paper, a piezoelectric actuator with a bridge structure inserted into the ear canal is proposed. The proposed method is that the displacement amplification ratio was derived using the formula of a bridge-type structure, and the displacement and resonance frequency were derived by finite element analysis (FEA) using different variables. The piezoelectric actuator was fabricated on the basis of FEA simulation results and verified through an artificial mastoid for stimulation in the ear canal. It is expected that the proposed piezoelectric actuator can be used in the various fields for sound and precision control.