
DYNAMICS OF COOPERATIVE REACTIONS BASED ON CHEMICAL KINETICS WITH REACTION SPEED: A COMPARATIVE ANALYSIS WITH SINGULAR AND NONSINGULAR KERNELS
Author(s) -
Zubair Ahmad,
Farhad Ali,
Aisha M. Alqahtani,
Naveed Khan,
İlyas Khan
Publication year - 2021
Publication title -
fractals
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 44
eISSN - 1793-6543
pISSN - 0218-348X
DOI - 10.1142/s0218348x22400485
Subject(s) - invertible matrix , fractional calculus , mathematics , ode , order (exchange) , nonlinear system , statistical physics , physics , pure mathematics , finance , quantum mechanics , economics
Chemical processes are constantly occurring in all existing creatures, and most of them contain proteins that are enzymes and perform as catalysts. To understand the dynamics of such phenomena, mathematical modeling is a powerful tool of study. This study is carried out for the dynamics of cooperative phenomenon based on chemical kinetics. Observations indicate that fractional models are more practical to describe complex systems’ dynamics, such as recording the memory in partial and full domains of particular operations. Therefore, this model is modeled in terms of classical-order-coupled nonlinear ODEs. Then the classical model is generalized with two different fractional operators of Caputo and Atangana–Baleanu in a Caputo sense. Some fundamental theoretical analysis for both the fractional models is also made. Reaction speeds for the extreme cases of positive/negative and no cooperation are also calculated. The graphical solutions are achieved via numerical schemes, and the simulations for both the models are carried out through the computational software MATLAB. It is observed that both the fractional models of Caputo and Atangana–Baleanu give identical results for integer order, i.e. [Formula: see text]. By decreasing the fractional parameters, the concentration profile of the substrate [Formula: see text] takes more time to vanish. Moreover, binding of first substrate increases the reaction rate at another binding site in the case of extreme positive cooperation, while the opposite effect is noticed for the case of negative cooperativity. Furthermore, the effects of other parameters on concentration profiles of different species are shown graphically and discussed physically.