z-logo
open-access-imgOpen Access
USE OF ATANGANA–BALEANU FRACTIONAL DERIVATIVE IN HELICAL FLOW OF A CIRCULAR PIPE
Author(s) -
Kashif Ali Abro,
İlyas Khan,
Kottakkaran Sooppy Nisar
Publication year - 2020
Publication title -
fractals
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.654
H-Index - 44
eISSN - 1793-6543
pISSN - 0218-348X
DOI - 10.1142/s0218348x20400496
Subject(s) - fractional calculus , laplace transform , mechanics , curvature , cylinder , mathematical analysis , partial differential equation , mathematics , ordinary differential equation , differential equation , physics , geometry
There is no denying fact that helically moving pipe/cylinder has versatile utilization in industries; as it has multi-purposes, such as foundation helical piers, drilling of rigs, hydraulic simultaneous lift system, foundation helical brackets and many others. This paper incorporates the new analysis based on modern fractional differentiation on infinite helically moving pipe. The mathematical modeling of infinite helically moving pipe results in governing equations involving partial differential equations of integer order. In order to highlight the effects of fractional differentiation, namely, Atangana–Baleanu on the governing partial differential equations, the Laplace and Hankel transforms are invoked for finding the angular and oscillating velocities corresponding to applied shear stresses. Our investigated general solutions involve the gamma functions of linear expressions. For eliminating the gamma functions of linear expressions, the solutions of angular and oscillating velocities corresponding to applied shear stresses are communicated in terms of Fox- H function. At last, various embedded rheological parameters such as friction and viscous factor, curvature diameter of the helical pipe, dynamic analogies of relaxation and retardation time and comparison of viscoelastic fluid models (Burger, Oldroyd-B, Maxwell and Newtonian) have significant discrepancies and semblances based on helically moving pipe.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here