z-logo
open-access-imgOpen Access
Modification of sarcoplasmic reticulum (SR) Ca2+release by FK506 induces defective excitation-contraction coupling only when SR Ca2+recycling is disturbed
Author(s) -
Shu Yoshihara,
Hiroshi Satoh,
Masao Saotome,
Hideki Katoh,
Hajime Terada,
Hiroshi Watanabe,
Hideharu Hayashi
Publication year - 2005
Publication title -
canadian journal of physiology and pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.559
H-Index - 84
eISSN - 1205-7541
pISSN - 0008-4212
DOI - 10.1139/y05-020
Subject(s) - ryanodine receptor , thapsigargin , endoplasmic reticulum , caffeine , chemistry , extracellular , biophysics , endocrinology , medicine , calcium , biochemistry , biology , organic chemistry
This study examined whether the effects of FK506-binding protein dissociation from sarcoplasmic reticulum (SR) Ca(2+) release channels on excitation-contraction (EC) coupling changed when SR Ca(2+) reuptake and (or) the trans-sarcolemmal Ca(2+) extrusion were altered. The steady-state twitch Ca(2+) transient (CaT), cell shortening, post-rest caffeine-induced CaT, and Ca(2+) sparks were measured in rat ventricular myocytes using laser-scanning confocal microscopy. In the normal condition, 50 micromol FK506/L significantly increased steady-state CaT, cell shortening, and post-rest caffeine-induced CaT. When the cells were solely perfused with thapsigargin, FK506 did not reduce any of the states, but when low [Ca(2+)](0) (0.1 mmol/L) was perfused additionally, FK506 reduced CaT and cell shortening, and accelerated the reduction of post-rest caffeine-induced CaT. FK506 significantly increased Ca(2+) spark frequency in the normal condition, whereas it mainly prolonged duration of individual Ca(2+) sparks under the combination of thapsigargin and low [Ca(2+)](0) perfusion. Modification of SR Ca(2+) release by FK506 impaired EC coupling only when released Ca(2+) could not be taken back into the SR and was readily extruded to the extracellular space. Our findings could partly explain the controversy regarding the contribution of FK506-binding protein dissociation to defective EC coupling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom