Uncoupled axial, flexural, and circumferential pipesoil interaction analyses of partially supported jointed water mains
Author(s) -
Balvant Rajani,
Solomon Tesfamariam
Publication year - 2004
Publication title -
canadian geotechnical journal
Language(s) - French
Resource type - Journals
SCImago Journal Rank - 2.032
H-Index - 118
eISSN - 1208-6010
pISSN - 0008-3674
DOI - 10.1139/t04-048
Subject(s) - pipeline transport , geotechnical engineering , water pipe , potable water , pipeline (software) , mains electricity , soil structure interaction , flexural strength , engineering , environmental science , structural engineering , finite element method , environmental engineering , mechanical engineering , electrical engineering , voltage , inlet
Pipelines used in the distribution of potable water are a vital part of everyday life. The pipelines buried in soil?backfill are exposed to different deleterious reactions; as a result, the design factor of safety may be significantly degraded and, consequently, pipelines may fail prematurely. Proactive pipeline management, which entails optimal maintenance, repair, or replacement strategies, helps increase the longevity of pipelines. The effect of different deterioration mechanisms and operating conditions needs to be understood to develop good proactive management practices. In this paper, a Winkler-type analytical model is developed to quantify the contributions of different stress drivers, e.g., pipe material type and size, bedding conditions, and temperature. Sensitivity analyses indicate that the extent of the unsupported length developed as a result of scour has a significant influence on the flexural pipe?soil response. As well, plastic pipes tolerate less loss of support than metallic pipes.Les conduites utilis\ue9es pour la distribution de l'eau potable constituent une partie vitale de la vie de tous les jours. Les conduites enfouies dans un remblai de sol sont expos\ue9es \ue0 diff\ue9rentes r\ue9actions nuisibles, et il en r\ue9sulte une d\ue9gradation du coefficient de s\ue9curit\ue9 utilis\ue9 pour le calcul et en cons\ue9quence les conduites se brisent pr\ue9matur\ue9ment. La gestion proactive des conduites qui comporte des strat\ue9gies optimales de maintenance, de r\ue9paration, ou de remplacement aide \ue0 accro\ueetre la long\ue9vit\ue9 des conduites. L'effet de diff\ue9rents m\ue9canismes de d\ue9t\ue9rioration et conditions d'op\ue9ration doit \ueatre bien compris de fa\ue7on \ue0 d\ue9velopper de bonnes pratiques de gestion proactive. Dans cet article, on a d\ue9velopp\ue9 un mod\ue8le analytique de type Winkler pour quantifier les contributions de diff\ue9rentes sources de contraintes, e.g., type de mat\ue9riau et dimension de la conduite, conditions du coussin, et temp\ue9rature. Des analyses de sensibilit\ue9 indiquent que l'importance de la longueur non support\ue9e qui se d\ue9veloppe \ue0 la suite de l'\ue9rosion a une influence significative sur la r\ue9action conduite?sol en flexion. \uc9galement, les conduites en plastique tol\ue8rent moins de perte d'appui que les conduites m\ue9talliques.Peer reviewed: YesNRC publication: Ye
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom