Pseudomonas aeruginosastrain MA01 aerobically metabolizes the aminodinitrotoluenes produced by 2,4,6-trinitrotoluene nitro group reduction
Author(s) -
Marc A. Alvarez,
Christopher L. Kitts,
Pat J. Unkefer,
James L. Botsford
Publication year - 1995
Publication title -
canadian journal of microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.635
H-Index - 94
eISSN - 1480-3275
pISSN - 0008-4166
DOI - 10.1139/m95-137
Subject(s) - cometabolism , trinitrotoluene , chemistry , strain (injury) , nitro , bacteria , nitro compound , stereochemistry , biochemistry , electron acceptor , organic chemistry , biology , bioremediation , genetics , alkyl , anatomy , explosive material
Many microbes reduce the nitro substituents of 2,4,6-trinitrotoluene (TNT), producing aminodinitrotoluenes (ADNTs). These compounds are recalcitrant to further breakdown and are acutely toxic. In a search for organisms capable of metabolizing ADNTs, a bacterial strain was isolated for the ability to use 2-aminobenzoate (anthranilate) as sole C-source. This isolate, Pseudomonas aeruginosa MA01, metabolized TNT by first reducing one nitro group to form either 2-amino-4,6-dinitrotoluene (2ADNT) or 4-amino-2,6-dinitrotoluene (4ADNT). However, strain MA01 was distinct from other TNT-reducing organisms in that it transformed these compounds into highly polar metabolites through an O2-dependent process. Strain MA01 was able to cometabolize TNT, 2ADNT, and 4ADNT in the presence of a variety of carbon and energy sources. During aerobic cometabolism with succinate, 45% of uniformly ring-labeled [14C]TNT was transformed to highly polar compounds. Aerobic cometabolism of purified [14C]2ADNT and [14C]4ADNT with succinate as C-source produced similar amounts of these polar metabolites. During O2-limited cometabolism with succinate as C-source and nitrate as electron acceptor, less than 8% of the [14C]TNT was transformed to polar metabolites. Purified 2,6-diamino-4-nitrotoluene was not metabolized, and while 2,4-diamino-6-nitrotoluene was acetylated, the product (N-acetyl-2,4-diamino-6-nitrotoluene) was not further metabolized. Therefore, strain MA01 metabolized TNT by oxidation of the ADNTs and not by reduction the remaining nitro groups on the ADNTs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom