Possibilistic approach for consideration of uncertainties to estimate structural capacity of ageing cast iron water mains
Author(s) -
Solomon Tesfamariam,
Balvant Rajani,
Rehan Sadiq
Publication year - 2006
Publication title -
canadian journal of civil engineering
Language(s) - French
Resource type - Journals
SCImago Journal Rank - 0.323
H-Index - 62
eISSN - 1208-6029
pISSN - 0315-1468
DOI - 10.1139/l06-042
Subject(s) - mains electricity , service life , safety factor , fuzzy logic , monte carlo method , pipeline transport , factor of safety , pipeline (software) , structural engineering , engineering , reliability engineering , computer science , mathematics , mechanical engineering , statistics , voltage , artificial intelligence , environmental engineering , electrical engineering
Drinking water distribution networks from essential components of all urban centres. Water mains buried in the soil-backfill are exposed to different deleterious reactions, with the result being that the design factor of safety may significantly degrade, leading to structural failure. In particular, metallic distribution and trunk mains are subject ot corrosion. Proactive pipeline management, which entails timely maintenance, repair, and renovation, can increase the service life of pipes. Several nondestructive evaluation techniques have recently become available to measure the remaining wall thickness of metallic pipes. In this paper, a previously developed analytical model based on Winkler-type pipe-soil interaction (WPI) is cast in a "possibilistic" framework to translate the remaining pipe wall thickness to current structural factor of safety. The WPSI model takes into consideration external (traffic, frost, etc.) and internal (operating and surge pressures) loads, temperature changes, and loss of bedding support and the reduction of pipe structural capacity in the presence of corrosion pits. Uncertainties associated with the input data-parameters are handled using fuzzy arithmetic operations and interpreted through possibility theory. A Monte Carlo type random sampling method is carried out for performing sensitivity analyses to identify the critical data-parameters that merit further investigation.Les r\ue9seaux de distribution d'eau sont parmi les composantes essentielles de tout centre urbain. Les conduites de distributiion enfouies dans le sol/remplissage sont expos\ue9es \ue0 plusieurs r\ue9actions d\ue9l\ue9t\ue8res et il peut en d\ue9couler que le coefficient de s\ue9curit\ue9 se d\ue9grade de mani\ue8re importante, engendrant une d\ue9faillance structurale. Plus particuli\ue8rement, les conduites m\ue9talliques principales et d'alimentation sont sujettes \ue0 la corrosion. La gestion proactive des conduites, qui demande de la maintenance, des r\ue9parations et des r\ue9novations en temps opportun, peut accro\ueetre la dur\ue9e de vie des conduites. Plusieurs techniques d'\ue9valuation non destructives pour mesurer l'\ue9paisseur r\ue9siduelle des parois des conduites m\ue9talliques sont maintenant disponibles. Le pr\ue9sent article met un mod\ue8le analytique d\ue9velopp\ue9 ant\ue9rieurement et bas\ue9 sur une interaction conduite-sol de type Winkler (WPSI) dans un cadre << possibiliste >> afin de traduire l'\ue9paisseur r\ue9siduelle des parois des conduites en un coefficient de s\ue9curit\ue9 structurale actualis\ue9. Le mod\ue8le WPSI tient compte des charges externes (circulation, gel, etc.) et internes (pression de fonctionnement et coups de b\ue9lier), les changements de temp\ue9rature et la perte de support de remplissage ainsi que la r\ue9duction de la capacit\ue9 structurale des conduites en pr\ue9sence de piq\ufbres de corrosion. Les incertitudes associ\ue9es aux donn\ue9es/param\ue8tres d'entr\ue9e sont trait\ue9es par des op\ue9rations arithm\ue9triques floues et interpr\ue9t\ue9es par la th\ue9orie des possibilit\ue9s. Une m\ue9thode d'\ue9chantilonnage al\ue9atoire de Monte-Carlo est effectu\ue9es pour les analyses de sensibilit\ue9 afin d'identifier les donn\ue9es/param\ue8tres critiques qui m\ue9ritent une attention plus approfondie.Peer reviewed: YesNRC publication: Ye
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom