z-logo
open-access-imgOpen Access
Net greenhouse gas fluxes from three High Arctic plant communities along a moisture gradient
Author(s) -
Ioan Wagner,
Jacqueline K.Y. Hung,
Allison Neil,
Neal A. Scott
Publication year - 2019
Publication title -
arctic science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.672
H-Index - 4
ISSN - 2368-7460
DOI - 10.1139/as-2018-0018
Subject(s) - environmental science , tundra , vegetation (pathology) , greenhouse gas , ecosystem , atmospheric sciences , terrestrial ecosystem , moisture , arctic , trace gas , ecology , chemistry , geology , medicine , organic chemistry , pathology , biology
Climate in high latitude environments is predicted to undergo a pronounced warming and increase in precipitation, which may influence the terrestrial moisture gradients that affect vegetation distribution. Vegetation cover can influence rates of greenhouse gas production through differences in microbial communities, plant carbon uptake potential, and root transport of gases out of the soil into the atmosphere. To predict future changes in greenhouse gas production from High Arctic ecosystems in response to climate change, it is important to understand the interaction between trace gas fluxes and vegetation cover. During the growing seasons of 2008 and 2009, we used dark static chambers to measure CH 4 and N 2 O fluxes and CO 2 emissions at Cape Bounty, Melville Island, NU, across a soil moisture gradient, as reflected by their vegetation cover. In both years, wet sedge had the highest rates of emission for all trace gases, followed by the mesic tundra ecosystem. CH 4 consumption was highest in the polar semi-desert, correlating positively with temperature and negatively with moisture. Our findings demonstrate that net CH 4 uptake may be largely underestimated across the Arctic due to sampling bias towards wetlands. Overall, greenhouse gas flux responses vary depending on different environmental drivers, and the role of vegetation cover needs to be considered in predicting the trajectory of greenhouse gas uptake and release in response to a changing climate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here