
Geochemical and geochronological records of tectonic changes along a flat-slab arc-transform junction: Circa 30 Ma to ca. 19 Ma Sonya Creek volcanic field, Wrangell Arc, Alaska
Author(s) -
Samuel E. Berkelhammer,
Matthew E. Brueseke,
Jeffrey A. Benowitz,
Jeffrey M. Trop,
Kailyn N. Davis,
Paul W. Layer,
Maridee A. Weber
Publication year - 2019
Publication title -
geosphere
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.879
H-Index - 58
ISSN - 1553-040X
DOI - 10.1130/ges02114.1
Subject(s) - geology , andesite , subduction , geochemistry , magmatism , adakite , rhyolite , basalt , volcanic rock , dacite , pacific plate , volcanic arc , island arc , volcano , oceanic crust , tectonics , seismology
The Sonya Creek volcanic field (SCVF) contains the oldest in situ volcanic products in the ca. 30 Ma–modern Wrangell Arc (WA) in south-central Alaska, which commenced due to Yakutat microplate subduction initiation. The WA occurs within a transition zone between Aleutian subduction to the west and dextral strike-slip tectonics along the Queen Charlotte–Fairweather and Denali–Duke River fault systems to the east. New 40Ar/39Ar geochronology of bedrock shows that SCVF magmatism occurred from ca. 30–19 Ma. New field mapping, physical volcanology, and major- and trace-element geochemistry, coupled with the 40Ar/39Ar ages and prior reconnaissance work, allows for the reconstruction of SCVF magmatic evolution. Initial SCVF magmatism that commenced at ca. 30 Ma records hydrous, subduction-related, calc-alkaline magmatism and also an adakite-like component that we interpret to represent slab-edge melting of the Yakutat slab. A minor westward shift of volcanism within the SCVF at ca. 25 Ma was accompanied by continued subduction-related magmatism without the adakite-like component (i.e., mantle-wedge melting), represented by ca. 25–20 Ma basaltic-andesite to dacite domes and associated diorites. These eruptions were coeval with another westward shift to anhydrous, transitional-tholeiitic, basaltic-andesite to rhyolite lavas and tuffs of the ca. 23–19 Ma Sonya Creek shield volcano; we attribute these eruptions to intra-arc extension. SCVF activity was also marked by a small southward shift in volcanism at ca. 21 Ma, characterized by hydrous calc-alkaline lavas. SCVF geochemical compositions closely overlap those from the 10 m.y.).