Determining Microbial Roles in Ecosystem Function: Redefining Microbial Food Webs and Transcending Kingdom Barriers
Author(s) -
Kim M. Handley
Publication year - 2019
Publication title -
msystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.931
H-Index - 39
ISSN - 2379-5077
DOI - 10.1128/msystems.00153-19
Subject(s) - ecosystem , biogeochemical cycle , ecology , archaea , microorganism , function (biology) , functional ecology , biology , environmental science , biochemical engineering , environmental resource management , bacteria , engineering , evolutionary biology , genetics
Microorganisms can have a profound and varying effect on the chemical character of environments and, thereby, ecological health. Their capacity to consume or transform contaminants leads to contrasting outcomes, such as the dissipation of nutrient pollution via denitrification, the breakdown of spilled oil, or eutrophication via primary producer overgrowth. Recovering the genomes of organisms directly from the environment is useful to gain insights into resource usage, interspecies collaborations (producers and consumers), and trait acquisition. Microbial data can also be considered alongside the broader biological character of an environment through the co-recovery of eukaryotic DNA. The contributions of individual microorganisms (bacteria, archaea, and protists) to snapshots of ecosystem processes can be determined by integrating genomics with functional methods. This combined approach enables a detailed understanding of how microbial communities drive biogeochemical cycles, and although currently limited by scale, key attributes can be effectively extrapolated with lower-resolution methods to determine wider ecological relevance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom