
Formation of irregular giant peroxisomes by overproduction of the crystalloid core protein methanol oxidase in the methylotrophic yeast Hansenula polymorpha.
Author(s) -
Rainer Roggenkamp,
Thomas Didion,
Klaus V. Kowallik
Publication year - 1989
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.9.3.988
Subject(s) - peroxisome , biology , overproduction , yeast , biochemistry , organelle , mutant , oxidase test , saccharomyces cerevisiae , alcohol oxidase , microbiology and biotechnology , enzyme , gene , recombinant dna , pichia pastoris
The crystalloid core in peroxisomes of the methylotrophic yeast Hansenula polymorpha is composed of the octameric flavoprotein methanol oxidase (MOX). We transformed yeast cells with a high-copy-number vector harboring the cloned MOX gene in order to study the effects on regulation, protein import, and peroxisome biosynthesis. In transformed wild-type cells, no increase in expression of MOX was detectable. Mutants defective in MOX activity were isolated by a specific selection procedure. Two structural MOX mutants are described that allow overproduction of a fully active enzyme upon transformation at quantities of about two-thirds of the total cellular protein. The overproduced protein was imported into peroxisomes, altering their morphology (in thin sections) and stability in cell lysates; the organelles showed a tendency to form rectangular bodies, and their lumina were completely filled with the crystalloid structure. The overall size of the peroxisomes was increased severalfold in comparison with the size of nontransformed yeast cells. The results suggest high capacities of peroxisomal growth conferred by overproduction and import of a single protein.