z-logo
open-access-imgOpen Access
Wolffish antifreeze protein genes are primarily organized as tandem repeats that each contain two genes in inverted orientation.
Author(s) -
G K Scott,
P H Hayes,
George P. Fletcher,
Peter L. Davies
Publication year - 1988
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.8.9.3670
Subject(s) - biology , genetics , gene , tandem repeat , inverted repeat , concerted evolution , repeated sequence , direct repeat , genome
The antifreeze protein genes of the wolffish (Anarhichas lupus) constitute a large multigene family of 80 to 85 copies, which can be classified into two sets. One-third of the genes were linked but irregularly spaced. The other two-thirds were organized as 8-kilobase-pair (kbp) tandem direct repeats that each contained two genes in inverted orientation; DNA sequence analysis suggests that both genes are functional. Except for a single region specific to each gene, the genes and their immediate flanking sequences were 99.2% identical. This degree of identity ended soon after a putative transcription termination sequence; as the 3' ends of the genes were only 1.3 kbp apart, these sequences might confer mutual protection from interference by transcriptional runoff. A Southern blot of wolffish DNA restricted with enzymes that do not cut within the tandem repeats indicated that the repeats were clustered in groups of six or more. The organization of antifreeze protein genes in the wolffish was very similar to that in the unrelated winter flounder, which produces a completely different antifreeze. This similarity might reflect common dynamics by which their progenitors adapted to life in ice-laden sea water.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here