z-logo
open-access-imgOpen Access
Posttranslational processing of endogenous and of baculovirus-expressed human gastrin-releasing peptide precursor.
Author(s) -
AnneMarie LebacqVerheyden,
Philip G. Kasprzyk,
Michael G. Raum,
Kathleen Coelingh,
Jean Lebacq,
James F. Battey
Publication year - 1988
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.8.8.3129
Subject(s) - biology , prohormone , cell culture , peptide , biochemistry , neuropeptide , gastrin releasing peptide , microbiology and biotechnology , receptor , hormone , genetics , bombesin
The 27-amino-acid gastrin-releasing peptide (GRP1-27) is a neuropeptide and growth factor that is synthesized by various neural and neuroendocrine cells. The major pro-GRP hormone (isoform I) contains both GRP1-27 and a novel C-terminal extension peptide termed pro-GRP31-125. In order to define potentially active neuropeptides that could be generated from this novel protein domain, we analyzed the posttranslational processing of endogenous human pro-GRP1-125 in a small-cell lung cancer cell line. Because such studies are much easier in an overexpression system, we investigated at the same time the posttranslational processing of baculovirus-expressed human pro-GRP1-125 in an insect ovary cell line. In the small-cell lung cancer cell line, GRP1-27 was cleaved as expected from the endogenous prohormone at a pair of basic amino acids (29 and 30) and alpha-amidated at its C-terminal methionine; however, a number of novel peptides were generated by additional cleavages in the pro-GRP31-125 domain. In the insect ovary cell line, GRP1-27 was cleaved from the expressed prohormone by a different mechanism, as were a number of other peptides that appeared to be similar in size to those produced by the human neuroendocrine tumor cell line. These data show for the first time that an insect ovary cell line that is widely used to overexpress proteins can process a human neuropeptide precursor. They also reveal the existence of novel pro-GRP-derived peptides that are candidates for biologically active ligands.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here