
A 12-base-pair sequence is an essential element of the ribosomal gene terminator in Xenopus laevis.
Author(s) -
Paul Labhart,
Ronald H. Reeder
Publication year - 1987
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.7.5.1900
Subject(s) - biology , terminator (solar) , xenopus , base pair , gene , transcription (linguistics) , ribosomal rna , microbiology and biotechnology , genetics , caat box , promoter , gene expression , physics , ionosphere , linguistics , philosophy , astronomy
rRNA transcription in Xenopus laevis terminates near a 7-base-pair (bp) conserved sequence (T3 box) located 200 bp upstream of the site of transcription initiation for the adjacent gene promoter. We present evidence here that a 12-bp element containing the T3 box is an essential part of the terminator. Using an oocyte injection assay, we found that the 12-bp element (but not the T3 box alone) severely reduced the amount of RNA detectable at sites downstream from itself and that the T3 box within the 12-bp element was required to specify the formation of correct 3' ends. This requirement for the 12-bp element was also seen in pulse-label experiments by using a homogenate of oocyte nuclei, but the present data did not allow us to determine the exact mechanism by which the 12-bp element acts. Removal of the T3 region from its normal location allowed a significant amount of readthrough transcripts to accumulate, indicating that additional sequences may be required for complete terminator function.