
Interaction between two different regulatory elements activates the murine alpha A-crystallin gene promoter in explanted lens epithelia.
Author(s) -
Ana B. Chepelinsky,
Bernd Sommer,
Joram Piatigorsky
Publication year - 1987
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.7.5.1807
Subject(s) - biology , microbiology and biotechnology , gene , chloramphenicol acetyltransferase , crystallin , transcription (linguistics) , promoter , regulatory sequence , oligonucleotide , regulation of gene expression , gene expression , genetics , philosophy , linguistics
Previous experiments have indicated that 5' flanking DNA sequences (nucleotides-366 to +46) are capable of regulating the lens-specific transcription of the murine alpha A-crystallin gene. Here we have analyzed these 5' regulatory sequences by transfecting explanted embryonic chicken lens epithelia with different alpha A-crystallin-CAT (chloramphenicol acetyltransferase) hybrid genes (alpha A-crystallin promoter sequences fused to the bacterial CAT gene in the pSVO-CAT expression vector). The results indicated the presence of a proximal (-88 to +46) and a distal (-111 to -88) domain which must interact for promoter function. Deletion experiments showed that the sequence between -88 and -60 was essential for function of the proximal domain in the explanted epithelia. A synthetic oligonucleotide containing the sequence between -111 and -84 activated the proximal domain when placed in either orientation 57 base pairs upstream from position -88 of the alpha A-crystallin-CAT hybrid gene.