
Microinjection of anti-topoisomerase I immunoglobulin G into nuclei of Chironomus tentans salivary gland cells leads to blockage of transcription elongation.
Author(s) -
E. Egyházi,
Egon Durban
Publication year - 1987
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.7.12.4308
Subject(s) - biology , microbiology and biotechnology , topoisomerase , rna polymerase ii , chromatin , transcription (linguistics) , rna polymerase i , rna , rna polymerase , transcription factor ii d , microinjection , dna , biochemistry , gene , gene expression , promoter , linguistics , philosophy
Purified anti-topoisomerase I immunoglobulin G (IgG) was microinjected into nuclei of Chironomus tentans salivary gland cells, and the effect on DNA transcription was investigated. Synthesis of nucleolar preribosomal 38S RNA by RNA polymerase I and of chromosomal Balbiani ring RNA by RNA polymerase II was inhibited by about 80%. The inhibitory action of anti-topoisomerase I IgG could be reversed by the addition of exogenous topoisomerase I. Anti-topoisomerase I IgG had less effect on RNA polymerase II-promoted activity of other less efficiently transcribing heterogeneous nuclear RNA genes. The pattern of inhibition of growing nascent Balbiani ring chains indicated that the transcriptional process was interrupted at the level of chain elongation. The highly decondensed state of active Balbiani ring chromatin, however, remained unaffected after injection of topoisomerase I antibodies. These data are consistent with the interpretation that topoisomerase I is an essential component in the transcriptional process but not in the maintenance of the decondensed state of active chromatin.