
Signal peptide specificity in posttranslational processing of the plant protein phaseolin in Saccharomyces cerevisiae.
Author(s) -
Jane Harris Cramer,
Kristi Lea,
Michael D. Schaber,
R. Arjen Kramer
Publication year - 1987
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.7.1.121
Subject(s) - signal peptide , biology , biochemistry , saccharomyces cerevisiae , peptide sequence , signal peptidase , phosphatase , yeast , microbiology and biotechnology , gene , enzyme
We linked the cDNA coding region for the bean storage protein phaseolin to the promoter and regulatory region of the Saccharomyces cerevisiae repressible acid phosphatase gene (PHO5) in multicopy expression plasmids. Yeast transformants containing these plasmids expressed phaseolin at levels up to 3% of the total soluble cellular protein. Phaseolin polypeptides in S. cerevisiae were glycosylated, and their molecular weights suggested that the signal peptide had been processed. We also constructed a series of plasmids in which the phaseolin signal-peptide-coding region was either removed or replaced with increasing amounts of the amino-terminal coding region for acid phosphatase. Phaseolin polypeptides with no signal peptide were not posttranslationally modified in S. cerevisiae. Partial or complete substitution of the phaseolin signal peptide with that from acid phosphatase dramatically inhibited both signal peptide processing and glycosylation, suggesting that some specific feature of the phaseolin signal amino acid sequence was required for these modifications to occur. Larger hybrid proteins that included approximately one-half of the acid phosphatase sequence linked to the amino terminus of the mature phaseolin polypeptide did undergo proteolytic processing and glycosylation. However, these polypeptides were cleaved at several sites that are not normally used in the unaltered acid phosphatase protein.