
A transforming ras gene can provide an essential function ordinarily supplied by an endogenous ras gene.
Author(s) -
Alex G. Papageorge,
Berthe M. Willumsen,
Morten Johnsen,
HsiangFu Kung,
Dennis W. Stacey,
William C. Vass,
Douglas R. Lowy
Publication year - 1986
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.6.5.1843
Subject(s) - mutant , 3t3 cells , biology , microbiology and biotechnology , gene , immunoprecipitation , mutagenesis , monoclonal antibody , transformation (genetics) , antibody , transfection , genetics
Microinjection of monoclonal antibody Y13-259, which reacts with all known mammalian and yeast ras-encoded proteins, has previously been shown to prevent NIH 3T3 cells from entering the S phase (L. S. Mulcahy, M. R. Smith, and D. W. Stacey, Nature [London] 313:241-243, 1985). We have now found several transformation-competent mutant v-rasH genes whose protein products in transformed NIH 3T3 cells are not immunoprecipitated by this monoclonal antibody. These mutant proteins are, however, precipitated by a different anti-ras antibody. Each of these mutants lacks Met-72 of v-rasH. In contrast to the result for cells transformed by wild-type v-rasH, Y13-259 microinjection of NIH 3T3 cells transformed by these mutant ras genes did not prevent the cells from entering the S phase. These results imply that a transformation-competent ras gene can supply a normal essential function for NIH 3T3 cells. When the proteins encoded by the mutant ras genes were overproduced in Escherichia coli, several mutant proteins that lacked Met-72 failed to bind Y13-259 in a Western blot. However, a ras protein from a mutant lacking amino antibody, but a ras protein from a mutant lacking amino acids 72 to 84 did not. These results suggest that Y13-259 may bind to a higher ordered structure that has been restored in the mutant lacking amino acids 72 to 82.