
Lineage-specific transformation after differentiation of multipotential murine stem cells containing a human oncogene.
Author(s) -
J C Bell,
Karen Jardine,
M W McBurney
Publication year - 1986
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.6.2.617
Subject(s) - biology , p19 cell , oncogene , cellular differentiation , transfection , microbiology and biotechnology , cell culture , retinoic acid , fibroblast , stem cell , cancer research , cell , cell cycle , adult stem cell , genetics , gene
We transfected the human EJ bladder carcinoma oncogene (Ha-rasEJ-1) into multipotential embryonal carcinoma cell line P19. The transgenic P19(ras+) cells expressed high levels of both the mRNA and the p21EJ protein derived from the oncogene. When cultured in the presence of retinoic acid, P19(ras+) cells differentiated and developed into the same spectrum of differentiated cell types as the parental P19 cells (namely, neurons, astrocytes, and fibroblast-like cells). Thus, it seems unlikely that the Ha-ras-1 proto-oncogene product plays a role in initiation of differentiation or in the choice of differentiated cell lineage. Most of the P19(ras+)-derived differentiated cells contained relatively low levels of p21EJ and were nontransformed, whereas certain cells with fibroblast-like morphology continued to express the Ha-rasEJ-1 gene at high levels and were transformed (i.e., immortal and anchorage independent). Fibroblasts derived from P19 cells did not become transformed following transfection of the Ha-rasEJ-1 oncogene, suggesting that transformation of the fibroblast cells only occurred if the oncogene was present and expressed during the early stages of the developmental lineage.