z-logo
open-access-imgOpen Access
Upstream sequences required for efficient expression of a soybean heat shock gene.
Author(s) -
William B. Gurley,
Eva Czarnecka,
Ronald T. Nagao,
Joe L. Key
Publication year - 1986
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.6.2.559
Subject(s) - biology , transcription (linguistics) , microbiology and biotechnology , dna , rna , gene , gene expression , tata box , general transcription factor , genetics , promoter , philosophy , linguistics
A soybean gene (Gmhsp17.5-E) encoding a small heat shock protein was introduced into primary sunflower tumors via T-DNA-mediated transformation. RNA blot hybridizations and S1-nuclease hybrid protection studies indicated that the heat shock gene containing 3.25 kilobases of 5'-flanking sequences was strongly transcribed in a thermoinducible (40 degrees C) manner. Transcriptional induction also occurred to a lesser extent upon treatment of whole tumors with sodium arsenite and CdCl2. Basal (26 degrees C) transcription was not detected in soybean seedlings, but it was quite evident in transformed tumor tissue. A 5' deletion to -1,175 base pairs with respect to the CAP site had no effect on the levels of thermoinducible transcription, but it resulted in a large increase in basal transcription. Further removal of DNA sequences (including the TATA-distal heat shock consensus element) to -95 base pairs reduced thermoinducible transcription by 95% and also greatly decreased basal transcription. The termini of the Gmhsp17.5-E RNA in the tumor were generally the same as those present in soybean RNA, with the exception of several additional 3' termini.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here