
Expression and characterization of the human c-myc DNA-binding protein.
Author(s) -
Rosemary Watt,
Allan R. Shatzman,
Martin Rosenberg
Publication year - 1985
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.5.3.448
Subject(s) - biology , microbiology and biotechnology , gel electrophoresis , complementary dna , fusion protein , gene product , hspa2 , protein a/g , antiserum , polyacrylamide gel electrophoresis , gene expression , gene , dna , sodium dodecyl sulfate , expression vector , polyclonal antibodies , biochemistry , peptide sequence , antibody , recombinant dna , genetics , enzyme
In an effort to study in detail the nature of the protein product of the human protooncogene c-myc, we have expressed the gene at high levels in Escherichia coli. The c-myc coding region was taken from a full-length cDNA clone and inserted into a vector designed to express foreign gene products efficiently in E. coli. Pulse-labeling experiments indicated that the rate of expression of c-myc in this thermoinducible expression system is very efficient. The product was relatively stable and accumulated to approximately 10% of total cellular protein. A purification protocol was devised which allowed the c-myc protein to be readily purified in quantities sufficient for detailed biochemical and physical analyses. A high-titer polyclonal antiserum was raised against the pure protein and shown to immunoprecipitate the p110gag-myc fusion protein of MC-29-infected quail cells. This antiserum also selectively detects a protein with an apparent molecular weight of 64,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis from a Burkitt lymphoma cell line. We conclude that this 64-kilodalton protein is the human c-myc gene product since the E. coli-made protein exhibits an equivalent molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even though its calculated molecular weight is 49,000. Furthermore, we demonstrate that the bacterially made human c-myc protein is a DNA-binding protein and that it exhibits a high nonspecific affinity for double-stranded DNA.