z-logo
open-access-imgOpen Access
Expression and characterization of the human c-myc DNA-binding protein.
Author(s) -
Rosemary Watt,
Allan R. Shatzman,
Martin Rosenberg
Publication year - 1985
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.5.3.448
Subject(s) - biology , microbiology and biotechnology , gel electrophoresis , complementary dna , fusion protein , gene product , hspa2 , protein a/g , antiserum , polyacrylamide gel electrophoresis , gene expression , gene , dna , sodium dodecyl sulfate , expression vector , polyclonal antibodies , biochemistry , peptide sequence , antibody , recombinant dna , genetics , enzyme
In an effort to study in detail the nature of the protein product of the human protooncogene c-myc, we have expressed the gene at high levels in Escherichia coli. The c-myc coding region was taken from a full-length cDNA clone and inserted into a vector designed to express foreign gene products efficiently in E. coli. Pulse-labeling experiments indicated that the rate of expression of c-myc in this thermoinducible expression system is very efficient. The product was relatively stable and accumulated to approximately 10% of total cellular protein. A purification protocol was devised which allowed the c-myc protein to be readily purified in quantities sufficient for detailed biochemical and physical analyses. A high-titer polyclonal antiserum was raised against the pure protein and shown to immunoprecipitate the p110gag-myc fusion protein of MC-29-infected quail cells. This antiserum also selectively detects a protein with an apparent molecular weight of 64,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis from a Burkitt lymphoma cell line. We conclude that this 64-kilodalton protein is the human c-myc gene product since the E. coli-made protein exhibits an equivalent molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even though its calculated molecular weight is 49,000. Furthermore, we demonstrate that the bacterially made human c-myc protein is a DNA-binding protein and that it exhibits a high nonspecific affinity for double-stranded DNA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom