z-logo
open-access-imgOpen Access
Alternative excision products originating from a single integration of polyomavirus DNA.
Author(s) -
D Huberdeau,
B S Sylla,
E Herring-Gillam,
Danielle Bourgaux-Ramoisy,
Pierre Bourgaux
Publication year - 1985
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.5.10.2608
Subject(s) - biology , dna , microbiology and biotechnology , chimera (genetics) , plasmid , genetics , population , gene , demography , sociology
The Cyp cell line consists of mouse cells transformed by a thermosensitive polyomavirus (Py) genome and routinely propagated at 39 degrees C. Cyp cells are readily induced to synthesize free Py DNA by being transferred to 33 degrees C. In one subclone (C12/a1/S48, or S48) of this line, such induction resulted in the intracellular accumulation of three discrete species of cyclic DNA, i.e., genomic Py DNA, RmI, and RmII. RmI and RmII are Py-mouse chimeras, each of which contains a distinct set of sequences originating from the site of integration. Conceivably, genomic Py DNA, RmI, and RmII could persist at 39 degrees C as free replicating plasmids or originate from distinct populations of cells in S48 cultures. The data indicated that all three species arise at 33 degrees C from a genetically homogeneous cell population in which neither RmI nor RmII replicates at 39 degrees C. Examination of the sequence at the viral-cellular junction unique to RmII indicated that this chimera is excised from the host chromosome through a recombination event involving a complex viral sequence and a simple cellular sequence. Therefore, RmII provides another example of precise recombination occurring between nonhomologous sequences in a mammalian cell, as already observed for RmI (B. S. Sylla, D. Huberdeau, D. Bourgaux-Ramoisy, and P. Bourgaux, Cell 37:661-667, 1984).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here