
Formation of vesicular stomatitis virus nucleocapsid from cytoskeletal framework-bound N protein: possible model for structure assembly.
Author(s) -
Pranam Chatterjee,
M. Victoria Camps Cervera,
Sheldon Penman
Publication year - 1984
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.4.10.2231
Subject(s) - vesicular stomatitis virus , biology , cytoskeleton , capsid , virus , dimer , microbiology and biotechnology , virology , biochemistry , cell , chemistry , organic chemistry
The pathway of vesicular stomatitis virus N protein from synthesis to assembly into capsids was studied by use of detergent extraction of infected HeLa cells together with protein cross-linking. One half of the newly synthesized N protein was extracted with the soluble cell proteins and, when cross-linked, never formed the N-N dimer characteristic of mature nucleocapsids. In contrast, the cytoskeleton-bound N protein first showed a diffuse spectrum of protein-protein cross-links but, after a lag of 40 min, assumed the cross-link pattern of N protein in nucleocapsids. The efficiency of forming N-N cross-linked dimers is the same for N protein on the skeleton as in nucleocapsids derived from mature virus, suggesting very similar configurations. However, the N protein bound on the skeletal framework formed several additional cross-links that were not found in mature virus and were apparently formed to cellular proteins estimated to be ca. approximately 46,000 and 60,000 in molecular weight.