z-logo
open-access-imgOpen Access
Transcription of c-onc genes c-rasKi and c-fms during mouse development.
Author(s) -
Rolf Müller,
D J Slamon,
Eileen D. Adamson,
Joanne M. Tremblay,
D Müller,
Martin J. Cline,
Inder M. Verma
Publication year - 1983
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.3.6.1062
Subject(s) - biology , gene , placenta , amnion , embryo , microbiology and biotechnology , gene expression , yolk sac , messenger rna , fetus , transcription (linguistics) , genetics , pregnancy , linguistics , philosophy
We investigated the expression of cellular sequences c-rasKi and c-fms, which are homologous to the oncogenes of Kirsten rat sarcoma virus and the McDonough strain of feline sarcoma virus, during murine development and in a variety of mouse tissues. The c-rasKi gene was found to be transcribed into two mRNA species of approximately 2.0 and 4.4 kilobases, whereas a single c-fms-related transcript of approximately 3.7 kilobases was identified. The c-rasKi gene appeared to be expressed ubiquitously, since similar levels of transcripts were observed in embryos, fetuses, extraembryonal structures, and a variety of postnatal tissues. In contrast, significant expression of c-fms was found to be confined to the placenta and extraembryonal membranes (i.e., combined yolk sac and amnion). The concentration of c-fms transcripts in the placenta increased approximately 15-fold (relative to day-7 to day-9 conceptuses) during development before reaching a plateau at day 14 to 15 of gestation. The time course of cfms expression in the extraembryonal membranes appeared to parallel the stage-specific pattern observed in the placenta. The level of c-fms transcripts in the extraembryonal tissues reached a level which was approximately 20- to 50-fold greater than that in the fetus. These findings suggest that the c-fms gene product may play a role in differentiation of extraembryonal structures or in transport processes occurring in these tissues. Our results indicate that the c-onc genes analyzed in the present study exert essentially different functions during mouse development.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom