z-logo
open-access-imgOpen Access
A Novel Type of Splicing Enhancer Regulating Adenovirus Pre-mRNA Splicing
Author(s) -
Oliver Mühlemann,
Bai-Gong Yue,
Svend K. Petersen-Mahrt,
Göran Akusjärvi
Publication year - 2000
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.20.7.2317-2325.2000
Subject(s) - rna splicing , biology , exonic splicing enhancer , sr protein , alternative splicing , protein splicing , minigene , microbiology and biotechnology , enhancer , messenger rna , rna , gene expression , genetics , gene
Splicing of the adenovirus IIIa pre-mRNA is subjected to a temporal regulation, such that efficient IIIa 3′ splice site usage is confined to the late phase of the infectious cycle. Here we show that IIIa pre-mRNA splicing is activated more than 200-fold in nuclear extracts prepared from late adenovirus-infected cells (Ad-NE) compared to uninfected HeLa cell nuclear extracts (HeLa-NE). In contrast, splicing of the β-globin pre-mRNA is repressed in Ad-NE. We constructed hybrid pre-mRNAs between IIIa and β-globin in order to identify the minimal IIIa sequence element conferring enhanced splicing in Ad-NE. Using this approach, we show that the IIIa branch site/pyrimidine tract functions as a Janus element: it blocks splicing in HeLa-NE and functions as a splicing enhancer in Ad-NE. Therefore, we named this sequence the IIIa virus infection-dependent splicing enhancer (3VDE). This element is essential for regulated IIIa pre-mRNA splicing in Ad-NE and sufficient to confer an enhanced splicing phenotype to the β-globin pre-mRNA in Ad-NE. We further show that the increase in IIIa splicing observed in Ad-NE is not accompanied by a similar increase in U2AF binding to the IIIa pyrimidine tract. This finding suggests that splicing activation by the 3VDE may operate without efficient U2AF interaction with the pre-mRNA. Importantly, this report represents the first description of a splicing enhancer that has evolved to function selectively in the context of a virus infection, a finding that adds a new level at which viruses may subvert the host cell RNA biosynthetic machinery to facilitate their own replication.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here