z-logo
open-access-imgOpen Access
Histone Acetyltransferase Complexes Can Mediate Transcriptional Activation by the Major Glucocorticoid Receptor Activation Domain
Author(s) -
Annika E. Wallberg,
Kristen E. Neely,
Jan-Ακε Gustafsson,
Jerry L. Workman,
Anthony P. H. Wright,
Patrick A. Grant
Publication year - 1999
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.19.9.5952
Subject(s) - transactivation , histone acetyltransferase , biology , chromatin , microbiology and biotechnology , histone , glucocorticoid receptor , transcription factor , acetyltransferase , histone h4 , chromatin remodeling , acetylation , genetics , gene
Previous studies have shown that the Ada adapter proteins are important for glucocorticoid receptor (GR)-mediated gene activation in yeast. The N-terminal transactivation domain of GR, τ1, is dependent upon Ada2, Ada3, and Gcn5 for transactivation in vitro and in vivo. Using in vitro techniques, we demonstrate that the GR-τ1 interacts directly with the native Ada containing histone acetyltransferase (HAT) complex SAGA but not the related Ada complex. Mutations in τ1 that reduce τ1 transactivation activity in vivo lead to a reduced binding of τ1 to the SAGA complex and conversely, mutations increasing the transactivation activity of τ1 lead to an increased binding of τ1 to SAGA. In addition, the Ada-independent NuA4 HAT complex also interacts with τ1. GAL4-τ1-driven transcription from chromatin templates is stimulated by SAGA and NuA4 in an acetyl coenzyme A-dependent manner. Low-activity τ1 mutants reduce SAGA- and NuA4-stimulated transcription while high-activity τ1 mutants increase transcriptional activation, specifically from chromatin templates. Our results demonstrate that the targeting of native HAT complexes by the GR-τ1 activation domain mediates transcriptional stimulation from chromatin templates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom