Overproduction of Human Myt1 Kinase Induces a G2 Cell Cycle Delay by Interfering with the Intracellular Trafficking of Cdc2-Cyclin B1 Complexes
Author(s) -
Feng Liu,
Cynthia RothblumOviatt,
Christine E. Ryan,
Helen PiwnicaWorms
Publication year - 1999
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.19.7.5113
Subject(s) - biology , cyclin dependent kinase 1 , microbiology and biotechnology , cyclin b1 , cyclin b , cyclin a , cyclin a2 , cyclin dependent kinase , cell cycle , cyclin dependent kinase complex , cyclin d , kinase , biochemistry , cyclin , cyclin dependent kinase 2 , protein kinase a , cell
The Myt1 protein kinase functions to negatively regulate Cdc2-cyclin B complexes by phosphorylating Cdc2 on threonine 14 and tyrosine 15. Throughout interphase, human Myt1 localizes to the endoplasmic reticulum and Golgi complex, whereas Cdc2-cyclin B1 complexes shuttle between the nucleus and the cytoplasm. Here we report that overproduction of either kinase-active or kinase-inactive forms of Myt1 blocked the nuclear-cytoplasmic shuttling of cyclin B1 and caused cells to delay in the G2 phase of the cell cycle. The COOH-terminal 63 amino acids of Myt1 were identified as a Cdc2-cyclin B1 interaction domain. Myt1 mutants lacking this domain no longer bound cyclin B1 and did not efficiently phosphorylate Cdc2-cyclin B1 complexes in vitro. In addition, cells overproducing mutant forms of Myt1 lacking the interaction domain exhibited normal trafficking of cyclin B1 and unperturbed cell cycle progression. These results suggest that the docking of Cdc2-cyclin B1 complexes to the COOH terminus of Myt1 facilitates the phosphorylation of Cdc2 by Myt1 and that overproduction of Myt1 perturbs cell cycle progression by sequestering Cdc2-cyclin B1 complexes in the cytoplasm.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom