z-logo
open-access-imgOpen Access
The Ability of CD40L, but Not Lipopolysaccharide, To Initiate Immunoglobulin Switching to Immunoglobulin G1 Is Explained by Differential Induction of NF-κB/Rel Proteins
Author(s) -
ShihChang Lin,
Henry H. Wortis,
Janet Stavnezer
Publication year - 1998
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.18.9.5523
Subject(s) - relb , biology , immunoglobulin class switching , microbiology and biotechnology , transcription factor , western blot , antibody , nfkb1 , b cell , immunology , genetics , gene
Antibodies of the immunoglobulin G1 class are induced in mice by T-cell-dependent antigens but not by lipopolysaccharide (LPS). CD40 engagement contributes to this preferential isotype production by activating NF-kappaB/Rel to induce germ line gamma1 transcripts, which are essential for class switch recombination. Although LPS also activates NF-kappaB, it poorly induces germ line gamma1 transcripts. Western blot analyses show that CD40 ligand (CD40L) induces all NF-kappaB/Rel proteins, whereas LPS activates predominantly p50 and c-Rel. Electrophoretic mobility shift assays show that in CD40L-treated cells, p50-RelA and p50-RelB dimers are the major NF-kappaB complexes binding to the germ line gamma1 promoter, whereas in LPS-treated cells, p50-c-Rel and p50-p50 dimers are the major binding complexes. Transfection of expression plasmids for NF-kappaB/Rel fusion proteins (forced dimers) indicates that p50-RelA and p50-RelB dimers activate the germ line gamma1 promoter and that p50-c-Rel and p50-p50 dimers inhibit this activation by competitively binding to the promoter without activating the promoter. Therefore, germ line gamma1 transcription depends on the composition of NF-kappaB/Rel proteins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom