
Dimerization by Translation Initiation Factor 2 Kinase GCN2 Is Mediated by Interactions in the C-Terminal Ribosome-Binding Region and the Protein Kinase Domain
Author(s) -
Hongfang Qiu,
Minerva T. Garcia-Barrio,
Alan G. Hinnebusch
Publication year - 1998
Publication title -
molecular and cellular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.14
H-Index - 327
eISSN - 1067-8824
pISSN - 0270-7306
DOI - 10.1128/mcb.18.5.2697
Subject(s) - biology , repressor lexa , fusion protein , ribosome , kinase , immunoprecipitation , biochemistry , plasma protein binding , protein kinase a , protein kinase domain , microbiology and biotechnology , transcription factor , recombinant dna , mutant , gene , repressor , rna
The protein kinase GCN2 stimulates translation of the transcriptional activatorGCN4 in yeast cells starved for amino acids by phosphorylating translation initiation factor 2. Several regulatory domains, including a pseudokinase domain, a histidyl-tRNA synthetase (HisRS)-related region, and a C-terminal (C-term) segment required for ribosome association, have been identified in GCN2. We used the yeast two-hybrid assay, coimmunoprecipitation analysis, and in vitro binding assays to investigate physical interactions between the different functional domains of GCN2. A segment containing about two thirds of the protein kinase (PK) catalytic domain and another containing the C-term region of GCN2 interacted with themselves in the two-hybrid assay, and both the PK and the C-term domains could be coimmunoprecipitated with wild-type GCN2 from yeast cell extracts. In addition, in vitro-translated PK and C-term segments showed specific binding in vitro to recombinant glutathioneS -transferase (GST)–PK and GST–C-term fusion proteins, respectively. Wild-type GCN2 could be coimmunoprecipitated with a full-length LexA-GCN2 fusion protein from cell extracts, providing direct evidence for dimerization by full-length GCN2 molecules. Deleting the C-term or PK segments abolished or reduced, respectively, the yield of GCN2–LexA-GCN2 complexes. These results provide in vivo and in vitro evidence that GCN2 dimerizes through self-interactions involving the C-term and PK domains. The PK domain showed pairwise in vitro binding interactions with the pseudokinase, HisRS, and C-term domains; additionally, the HisRS domain interacted with the C-term region. We propose that physical interactions between the PK domain and its flanking regulatory regions and dimerization through the PK and C-term domains both play important roles in restricting GCN2 kinase activity to amino acid-starved cells.